z-logo
open-access-imgOpen Access
Ethyl pyruvate attenuates ventilation‐induced diaphragm dysfunction through high‐mobility group box‐1 in a murine endotoxaemia model
Author(s) -
Liu YungYang,
Chen NingHung,
Chang ChihHao,
Lin ShihWei,
Kao KuoChin,
Hu HanChung,
Chang GwoJyh,
Li LiFu
Publication year - 2019
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.14478
Subject(s) - diaphragm (acoustics) , ventilation (architecture) , medicine , mechanical ventilation , anesthesia , chemistry , physics , acoustics , loudspeaker , thermodynamics
Mechanical ventilation (MV) can save the lives of patients with sepsis. However, MV in both animal and human studies has resulted in ventilator‐induced diaphragm dysfunction (VIDD). Sepsis may promote skeletal muscle atrophy in critically ill patients. Elevated high‐mobility group box‐1 (HMGB1) levels are associated with patients requiring long‐term MV. Ethyl pyruvate (EP) has been demonstrated to lengthen survival in patients with severe sepsis. We hypothesized that the administration of HMGB1 inhibitor EP or anti‐HMGB1 antibody could attenuate sepsis‐exacerbated VIDD by repressing HMGB1 signalling. Male C57BL/6 mice with or without endotoxaemia were exposed to MV (10 mL/kg) for 8 hours after administrating either 100 mg/kg of EP or 100 mg/kg of anti‐HMGB1 antibody. Mice exposed to MV with endotoxaemia experienced augmented VIDD, as indicated by elevated proteolytic, apoptotic and autophagic parameters. Additionally, disarrayed myofibrils and disrupted mitochondrial ultrastructures, as well as increased HMGB1 mRNA and protein expression, and plasminogen activator inhibitor‐1 protein, oxidative stress, autophagosomes and myonuclear apoptosis were also observed. However, MV suppressed mitochondrial cytochrome C and diaphragm contractility in mice with endotoxaemia ( P <  0.05). These deleterious effects were alleviated by pharmacologic inhibition with EP or anti‐HMGB1 antibody ( P <  0.05). Our data suggest that EP attenuates endotoxin‐enhanced VIDD by inhibiting HMGB1 signalling pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here