z-logo
open-access-imgOpen Access
Knockdown of spliceosome U2AF1 significantly inhibits the development of human erythroid cells
Author(s) -
Zhang Jieying,
Zhao Huizhi,
Wu Kunlu,
Peng Yuanliang,
Han Xu,
Zhang Huan,
Liang Long,
Chen Huiyong,
Hu Jingping,
Qu Xiaoli,
Zhang Shijie,
Chen Lixiang,
Liu Jing
Publication year - 2019
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.14370
Subject(s) - gene knockdown , erythropoiesis , biology , microbiology and biotechnology , wnt signaling pathway , apoptosis , signal transduction , genetics , medicine , anemia
U2AF1 (U2AF35) is the small subunit of the U2 auxiliary factor (U2AF) that constitutes the U2 snRNP (small nuclear ribonucleoproteins) of the spliceosome. Here, we examined the function of U2AF1 in human erythropoiesis. First, we examined the expression of U2AF1 during in vitro human erythropoiesis and showed that U2AF1 was highly expressed in the erythroid progenitor burst‐forming‐unit erythroid (BFU‐E) cell stage. A colony assay revealed that U2AF1 knockdown cells failed to form BFU‐E and colony‐forming‐unit erythroid (CFU‐E) colonies. Our results further showed that knockdown of U2AF1 significantly inhibited cell growth and induced apoptosis in erythropoiesis. Additionally, knockdown of U2AF1 also delayed terminal erythroid differentiation. To explore the molecular basis of the impaired function of erythroid development, RNA‐seq was performed and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that several biological pathways, including the p53 signalling pathway, MAPK signalling pathway and haematopoietic cell lineage, were involved, with the p53 signalling pathway showing the greatest involvement. Western blot analysis revealed an increase in the protein levels of downstream targets of p53 following U2AF1 knockdown. The data further showed that depletion of U2AF1 altered alternatively spliced apoptosis‐associated gene transcripts in CFU‐E cells. Our findings elucidate the role of U2AF1 in human erythropoiesis and reveal the underlying mechanisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here