z-logo
open-access-imgOpen Access
MicroRNA‐92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway
Author(s) -
Wang Jingyu,
Zhang Chenxu,
Li Cai,
Zhao Dandan,
Li Shuyao,
Ma Le,
Cui Ying,
Wei Xiaoqing,
Zhao Ying,
Gao Ying
Publication year - 2019
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.14274
Subject(s) - myosin light chain kinase , microbiology and biotechnology , klf4 , vascular smooth muscle , stat3 , stat protein , biology , transcription factor , signal transduction , myosin , endocrinology , biochemistry , smooth muscle , sox2 , gene
To identify the interaction between known regulators of atherosclerosis, microRNA‐92a (miR‐92a), Rho‐associated coiled‐coil‐forming kinase (ROCK) and myosin light chain kinase (MLCK), we examined their expressions during proliferation and migration of platelet‐derived growth factor‐BB (PDGF‐BB)‐regulated vascular smooth muscle cells (VSMCs), both in vivo and in vitro. During the formation of atherosclerosis plaque in mice, a parallel increase in expression levels of MLCK and miR‐92a was observed while miR‐92a expression was reduced in ML‐7 (an inhibitor of MLCK) treated mice and in MLCK‐deficient VSMCs. In vitro results indicated that both MLCK and miR‐92a shared the same signalling pathway. Transfection of miR‐92a mimic partially restored the effect of MLCK's deficiency and antagonized the effect of Y27632 (an inhibitor of ROCK) on the down‐regulation of VSMCs activities. ML‐7 increased the expression of Kruppel‐like factor 4 (KLF4, a target of miR‐92a), and siRNA‐KLF4 increased VSMCs' activity level. Consistently, inhibition of either MLCK or ROCK enhanced the KLF4 expression. Moreover, we observed that ROCK/MLCK up‐regulated miR‐92a expression in VSMCs through signal transducer and activator of transcription 3 (STAT3) activation. In conclusion, the activation of ROCK/STAT3 and/or MLCK/STAT3 may up‐regulate miR‐92a expression, which subsequently inhibits KLF4 expression and promotes PDGF‐BB‐mediated proliferation and migration of VSMCs. This new downstream node in the ROCK/MLCK signalling pathway may offer a potential intervention target for treatment of atherosclerosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here