
Down‐regulated lncRNA SLC25A5‐AS1 facilitates cell growth and inhibits apoptosis via miR‐19a‐3p/PTEN/PI3K/AKT signalling pathway in gastric cancer
Author(s) -
Li Xiwen,
Yan Xin,
Wang Feng,
Yang Qian,
Luo Xi,
Kong Jun,
Ju Shaoqing
Publication year - 2019
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.14200
Subject(s) - pten , competing endogenous rna , pi3k/akt/mtor pathway , protein kinase b , biology , microrna , cancer research , cell growth , apoptosis , cell cycle , signal transduction , microbiology and biotechnology , long non coding rna , downregulation and upregulation , gene , genetics
Mounting evidence has illustrated the vital roles of long non‐coding RNAs (lncRNAs in gastric cancer (GC). Nevertheless, the majority of their roles and mechanisms in GC are still largely unknown. In this study, we investigate the roles of lncRNA SLC25A5‐AS1 on tumourigenesis and explore its potential mechanisms in GC. The results showed that the expressions of SLC25A5‐AS1 in GC were significantly lower than that of adjacent normal tissues, which were significantly associated with tumour size, TNM stage and lymph node metastasis. Moreover, SLC25A5‐AS1 could inhibit GC cell proliferation, induce G1/G1 cell cycle arrest and cell apoptosis in vitro, as well as GC growth in vivo. Dual‐luciferase reporter assay confirmed the direct interaction between SLC25A5‐AS1 and miR‐19a‐3p, rescue experiment showed that co‐transfection miR‐19a‐3p mimics and pcDNA‐SLC25A5‐AS1 could partially restore the ability of GC cell proliferation and the inhibition of cell apoptosis. The mechanism analyses further found that SLC25A5‐AS1 might act as a competing endogenous RNAs (ceRNA), which was involved in the derepression of PTEN expression, a target gene of miR‐19a‐3p, and regulate malignant phenotype via PI3K/AKT signalling pathway in GC. Taken together, this study indicated that SLC25A5‐AS1 was down‐regulated in GC and functioned as a suppressor in the progression of GC. Moreover, it could act as a ceRNA to regulate cellular behaviours via miR‐19a‐3p/PTEN/PI3K/AKT signalling pathway. Thus, SLC25A5‐AS1 might be served as a potential target for cancer therapeutics in GC.