
Molecular biomarkers in cardiac hypertrophy
Author(s) -
Zhu Liu,
Li Chao,
Liu Qiang,
Xu Weiting,
Zhou Xiang
Publication year - 2019
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.14129
Subject(s) - pathogenesis , muscle hypertrophy , cardiac myocyte , afterload , medicine , cardiology , heart failure , blood pressure
Cardiac hypertrophy is characterized by an increase in myocyte size in the absence of cell division. This condition is thought to be an adaptive response to cardiac wall stress resulting from the enhanced cardiac afterload. The pathogenesis of heart dysfunction, which is one of the primary causes of morbidity and mortality in elderly people, is often associated with myocardial remodelling caused by cardiac hypertrophy. In order to well understand the potential mechanisms, we described the molecules involved in the development and progression of myocardial hypertrophy. Increasing evidence has indicated that micro‐RNAs are involved in the pathogenesis of cardiac hypertrophy. In addition, molecular biomarkers including vascular endothelial growth factor B, NAD‐dependent deacetylase sirtuin‐3, growth/differentiation factor 15 and glycoprotein 130, also play important roles in the development of myocardial hypertrophy. Knowing the regulatory mechanisms of these biomarkers in the heart may help identify new molecular targets for the treatment of cardiac hypertrophy.