
Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett's oesophagus by modulating integrin‐αv trafficking
Author(s) -
Prichard David O.,
Byrne Anne Marie,
Murphy James O.,
Reynolds John V.,
O'Sullivan Jacintha,
Feighery Ronan,
Doyle Brendan,
Eldin Osama Sharaf,
Finn Stephen P.,
Maguire Aoife,
Duff Deirdre,
Kelleher Dermot P.,
Long Aideen
Publication year - 2017
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.13271
Subject(s) - vitronectin , integrin , laminin , fibronectin , deoxycholic acid , cell adhesion molecule , extracellular matrix , epithelium , cell adhesion , cancer research , cell , chemistry , biology , pathology , microbiology and biotechnology , bile acid , medicine , biochemistry
The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus ( BO ) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium ( HET ‐1A) and BO ( QH ) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α 3 , α 4, α 5 , α 6 and α ν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease ( GORD ) and in patient tissue microarrays. The bile acid deoxycholic acid ( DCA ) specifically reduced adhesion of HET ‐1A cells to vitronectin and reduced cell‐surface expression of integrin‐α ν via effects on endocytic recycling processes. Increased expression of integrin‐α v was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin‐α ν was observed in QH BO cells compared to HET ‐1A cells. QH cells were resistant to DCA ‐mediated loss of adhesion and reduction in cell‐surface expression of integrin‐α ν . We demonstrated that a specific component of the gastric refluxate, DCA , affects the epithelial barrier through modulation of integrin α ν expression, providing a novel mechanism for bile acid‐mediated erosion of oesophageal squamous epithelium and promotion of BO . Strategies aimed at preventing bile acid‐mediated erosion should be considered in the clinical management of patients with GORD .