z-logo
open-access-imgOpen Access
Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium
Author(s) -
Spencer Carrie,
Abend Stephanie,
McHugh Kevin J.,
SaintGeniez Magali
Publication year - 2017
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.13175
Subject(s) - retinal pigment epithelium , microbiology and biotechnology , biology , epithelium , retina , endothelial stem cell , retinal , endothelium , pathology , biochemistry , medicine , endocrinology , genetics , neuroscience , in vitro
The retinal pigment epithelium located between the neurosensory retina and the choroidal vasculature is critical for the function and maintenance of both the photoreceptors and underlying capillary endothelium. While the trophic role of retinal pigment epithelium on choroidal endothelial cells is well recognized, the existence of a reciprocal regulatory function of endothelial cells on retinal pigment epithelium cells remained to be fully characterized. Using a physiological long‐term co‐culture system, we determined the effect of retinal pigment epithelium‐endothelial cell heterotypic interactions on cell survival, behaviour and matrix deposition. Human retinal pigment epithelium and endothelial cells were cultured on opposite sides of polyester transwells for up to 4 weeks in low serum conditions. Cell viability was quantified using a trypan blue assay. Cellular morphology was evaluated by H&E staining, S.E.M. and immunohistochemistry. Retinal pigment epithelium phagocytic function was examined using a fluorescent bead assay. Gene expression analysis was performed on both retinal pigment epithelium and endothelial cells by quantitative PCR. Quantification of extracellular matrix deposition was performed on decellularized transwells stained for collagen IV , fibronectin and fibrillin. Our results showed that presence of endothelial cells significantly improves retinal pigment epithelium maturation and function as indicated by the induction of visual cycle‐associated genes, accumulation of a Bruch's membrane‐like matrix and increase in retinal pigment epithelium phagocytic activity. Co‐culture conditions led to increased expression of anti‐angiogenic growth factors and receptors in both retinal pigment epithelium and endothelial cells compared to monoculture. Tube‐formation assays confirmed that co‐culture with retinal pigment epithelium significantly decreased the angiogenic phenotype of endothelial cells. These findings provide evidence of critical interdependent interactions between retinal pigment epithelium and endothelial cell involved in the maintenance of retinal homeostasis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here