z-logo
open-access-imgOpen Access
Circulating exosomal microRNA‐96 promotes cell proliferation, migration and drug resistance by targeting LMO7
Author(s) -
Wu Hao,
Zhou Jingcheng,
Mei Shanshan,
Wu Da,
Mu Zhimin,
Chen Baokun,
Xie Yuancai,
Ye Yiwang,
Liu Jixian
Publication year - 2017
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.13056
Subject(s) - biology , microvesicles , lung cancer , cancer research , microrna , transfection , cancer , viability assay , cell growth , cell , microbiology and biotechnology , pathology , cell culture , medicine , gene , genetics
Detection and treatment of lung cancer still remain a clinical challenge. This study aims to validate exosomal microRNA‐96 (miR‐96) as a serum biomarker for lung cancer and understand the underlying mechanism in lung cancer progression. MiR‐96 expressions in normal and lung cancer patients were characterized by qPCR analysis. Changes in cell viability, migration and cisplatin resistance were monitored after incubation with isolated miR‐96‐containing exosomes, anti‐miR‐96 and anti‐miR negative control (anti‐miR‐NC) transfections. Dual‐luciferase reporter assay was used to study interaction between miR‐96 and LIM‐domain only protein 7 (LMO7). Changes induced by miR‐96 transfection and LMO7 overexpression were also evaluated. MiR‐96 expression was positively correlated with high‐grade and metastatic lung cancers. While anti‐miR‐96 transfection exhibited a tumour‐suppressing function, exosomes isolated from H1299 enhanced cell viability, migration and cisplatin resistance. Potential miR‐96 binding sites were found within the 3′‐UTR of wild‐type LMO7 gene, but not of mutant LMO7 gene. LMO7 expression was inversely correlated with lung cancer grades, and LMO7 overexpression reversed promoting effect of miR‐96. We have identified exosomal miR‐96 as a serum biomarker of malignant lung cancer. MiR‐96 promotes lung cancer progression by targeting LMO7. The miR‐96‐LMO7 axis may be a therapeutic target for lung cancer patients, and new diagnostic or therapeutic strategies could be developed by targeting the miR‐96‐LMO7 axis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here