z-logo
Premium
Challenges and opportunities of multimodal data in human learning: The computer science students' perspective
Author(s) -
Mangaroska Katerina,
MartinezMaldonado Roberto,
Vesin Boban,
Gašević Dragan
Publication year - 2021
Publication title -
journal of computer assisted learning
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.583
H-Index - 93
eISSN - 1365-2729
pISSN - 0266-4909
DOI - 10.1111/jcal.12542
Subject(s) - computer science , perspective (graphical) , wearable computer , human–computer interaction , learning analytics , multimodality , multimodal learning , data science , world wide web , artificial intelligence , embedded system
Multimodal data have the potential to explore emerging learning practices that extend human cognitive capacities. A critical issue stretching in many multimodal learning analytics (MLA) systems and studies is the current focus aimed at supporting researchers to model learner behaviours, rather than directly supporting learners. Moreover, many MLA systems are designed and deployed without learners' involvement. We argue that in order to create MLA interfaces that directly support learning, we need to gain an expanded understanding of how multimodal data can support learners' authentic needs. We present a qualitative study in which 40 computer science students were tracked in an authentic learning activity using wearable and static sensors. Our findings outline learners' curated representations about multimodal data and the non‐technical challenges in using these data in their learning practice. The paper discusses 10 dimensions that can serve as guidelines for researchers and designers to create effective and ethically aware student‐facing MLA innovations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here