Premium
Beta diversity at multiple hierarchical levels: explaining the high diversity of scarab beetles in tropical montane forests
Author(s) -
GarcíaLópez Alejandra,
Micó Estefanía,
Múrria Cesc,
Galante Eduardo,
Vogler Alfried P.
Publication year - 2013
Publication title -
journal of biogeography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.7
H-Index - 158
eISSN - 1365-2699
pISSN - 0305-0270
DOI - 10.1111/jbi.12148
Subject(s) - biology , ecology , gamma diversity , clade , phylogenetic tree , beta diversity , alpha diversity , species diversity , biodiversity , gene , biochemistry
Aim High gamma diversity in tropical montane forests may be ascribed to high geographical turnover of community composition, resulting from population isolation that leads to speciation. We studied the evolutionary processes responsible for diversity and turnover in assemblages of tropical scarab beetles ( S carabaeidae) by assessing DNA sequence variation at multiple hierarchical levels. Location A 300‐km transect across six montane forests (900–1100 m) in C osta R ica. Methods Assemblages of S carabaeidae (subfamilies D ynastinae, R utelinae, M elolonthinae) including 118 morphospecies and > 500 individuals were sequenced for the cox1 gene to establish species limits with a mixed Yule–coalescent method. A species‐level phylogenetic tree was constructed from cox1 and rrnL genes. Total diversity and turnover among assemblages were then assessed at three hierarchical levels: haplotypes, species and higher clades. Results DNA ‐based analyses showed high turnover among communities at all hierarchical levels. Turnover was highest at the haplotype level (community similarity 0.02–0.12) and decreased with each step of the hierarchy (species: 0.21–0.46; clades: 0.41–0.43). Both compositional and phylogenetic similarities of communities were geographically structured, but turnover was not correlated with distance among forests. When three major clades were investigated separately, communities of D ynastinae showed consistently higher alpha diversity, larger species ranges and lower turnover than R utelinae and M elolonthinae. Main conclusions Scarab communities of montane forests show evidence of evolutionary persistence of communities in relative isolation, presumably tracking suitable habitats elevationally to accommodate climatic changes. Patterns of diversity on all hierarchical levels seem to be determined by restricted dispersal, and differences in D ynastinae could be explained by their greater dispersal ability. Community‐wide DNA sequencing across multiple lineages and hierarchical levels reveals the evolutionary processes that led to high beta diversity in tropical montane forests through time.