Premium
The Mass and Energy Exchange of a Tibetan Glacier: Distributed Modeling and Climate Sensitivity
Author(s) -
Li Binquan,
Acharya Kumud,
Yu Zhongbo,
Liang Zhongmin,
Su Fengge
Publication year - 2015
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/jawr.12286
Subject(s) - glacier , snowmelt , glacial period , surface runoff , environmental science , glacier mass balance , latent heat , meltwater , energy balance , precipitation , hydrology (agriculture) , climatology , sensible heat , snow , geology , atmospheric sciences , geomorphology , meteorology , geography , ecology , geotechnical engineering , biology
Most glaciers in the Tibetan Plateau ( TP ) are not closely monitored for mass balance (MB) due to their inaccessibility, which makes it difficult to better understand the dynamics of glacial advancement or retreat. Surface energy budget, MB, and the resulting melt runoff were calculated for Zhadang glacier (5,710 m above sea level) of the central TP . Energy balance was calculated on 30‐m square grids for the summers of 2007 and 2008. On average, net radiation dominated the total energy source (66%) while the residual was supplied by sensible heat flux. More than 67% of the energy sink was available for melting on the glacier. Thus, less than 33% of the total energy was consumed by latent heat flux. A large and a slightly negative summer MB were calculated for the 2007 and 2008 summers, respectively. The high sensitivity of the glacier to air temperature may indicate that the lower than average seasonal temperature was more important than the increased precipitation for the slightly negative MB in the summer of 2008. Comparisons of glacial melt runoff indicated that rainfall and snowmelt were the dominant contribution to total runoff in the glacierized basin and the ice melting is also very important. Glacial melt calculation provides a basis for quantifying glacial melt‐runoff contribution to the river streamflow in the TP .