Premium
Spatial and Temporal Patterns of Endocrine Active Chemicals in Small Streams Indicate Differential Exposure to Aquatic Organisms
Author(s) -
Lee K.E.,
Barber L.B.,
Schoenfuss H.L.
Publication year - 2014
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/jawr.12162
Subject(s) - estrone , nonylphenol , effluent , hormone , endocrine system , streams , environmental chemistry , endocrine disruptor , chemistry , estrogen , upstream and downstream (dna) , biology , environmental science , endocrinology , upstream (networking) , environmental engineering , computer network , computer science
Alkylphenolic chemicals (APCs) and hormones were measured six times from February through October 2007 in three Minnesota streams receiving wastewater to identify spatial and temporal patterns in concentrations and in estrogen equivalency. Fish were collected once during the study to evaluate endpoints indicative of endocrine disruption. The most commonly detected APCs were 4‐ tert ‐octylphenol and 4‐nonylphenol and the most commonly detected hormones were estrone and androstenedione. Chemical concentrations were greatest for nonylphenol ethoxycarboxylates (NPECs) (5,000‐140,000 ng/l), followed by 4‐nonlylphenol and 4‐nonylphenolethoxylates (50‐880 ng/l), 4‐ tert ‐octylphenol and 4‐ tert ‐octylphenolethoxylates with concentrations as great as 130 ng/l, and hormones (0.1‐54 ng/l). Patterns in chemicals and estrogen equivalency indicated that wastewater effluent is a pathway of APCs and hormones to downstream locations in this study. However, upstream contributions can be equally or more important indicating alternative sources. This study indicates that aquatic organisms experience both spatially and temporally variable exposures in the number of compounds, total concentrations, and estrogenicity. This variability was evident in fish collected from the three rivers as no clear upstream to downstream pattern of endocrine disruption endpoints emerged.