z-logo
Premium
Modeling Biochemical Oxygen Demand Through the Middle and Lower Savannah River 1
Author(s) -
Rosenquist Shawn E.,
Moak Jason W.,
Flite Oscar P.
Publication year - 2013
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/jawr.12014
Subject(s) - biochemical oxygen demand , environmental science , river ecosystem , water quality , chemical oxygen demand , hydrology (agriculture) , current (fluid) , drainage basin , ecology , environmental engineering , ecosystem , geography , engineering , biology , geotechnical engineering , electrical engineering , wastewater , cartography
  In order to improve modeling accuracy and general understanding of lotic biochemical oxygen demand (BOD), this study characterized river metabolism with the current Georgia Environmental Protection Division method for the middle and lower Savannah River basin (MLSRB) and several alternative methods developed with 120‐day, long‐term biochemical oxygen demand (LTBOD) data from the MLSRB. The data were a subset of a larger two‐year LTBOD study to characterize and understand BOD in the MLSRB, located approximately between Augusta, Georgia, and Savannah, Georgia, along the border of Georgia and South Carolina. The LTBOD data included total oxygen loss and nitrogen speciation for separately quantifying nitrification. Results support the following insights and opportunities for modeling methods: (1) it is important to modeling accuracy that residuals be checked for even dispersion to avoid areas of over‐ and underprediction; (2) modeling with bounded, yet unfixed, rates is a sufficiently simple alternative to fixed‐rate modeling that can eliminate the need for manual adjustments and provide additional system understanding to inform regulation; (3) if fixed rates modeling is desired, model quality for this system might be improved through revising the current low rate (along with the associated f ‐ratio updates) from 0.02/day rate to 0.006/day and potentially adding a new rate at 1.0/day in some cases; and (4) the current 57/43 ratio of slow/fast BOD is reasonable based on the 52/45/3 slow/fast/faster BOD proportions of this study.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here