z-logo
Premium
Characterization of Storm Flow Dynamics of Headwater Streams in the South Carolina Lower Coastal Plain 1
Author(s) -
Epps Thomas H.,
Hitchcock Daniel R.,
Jayakaran Anand D.,
Loflin Drake R.,
Williams Thomas M.,
Amatya Devendra M.
Publication year - 2013
Publication title -
jawra journal of the american water resources association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.957
H-Index - 105
eISSN - 1752-1688
pISSN - 1093-474X
DOI - 10.1111/jawr.12000
Subject(s) - hydrology (agriculture) , streamflow , surface runoff , coastal plain , environmental science , evapotranspiration , watershed , hydrograph , storm , water table , groundwater , groundwater recharge , streams , runoff curve number , geology , drainage basin , geography , aquifer , ecology , oceanography , paleontology , computer network , geotechnical engineering , cartography , machine learning , computer science , biology
Epps, Thomas H., Daniel R. Hitchcock, Anand D. Jayakaran, Drake R. Loflin, Thomas M. Williams, and Devendra M. Amatya, 2012. Characterization of Storm Flow Dynamics of Headwater Streams in the South Carolina Lower Coastal Plain. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12000 Abstract:  Hydrologic monitoring was conducted in two first‐order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three‐year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph separation method that partitioned total streamflow into sustained base flow and direct runoff components. ROC ratios ranged from 0 to 0.32 on the Upper Debidue Creek (UDC) watershed and 0 to 0.57 on Watershed 80 (WS80); TSR results ranged from 0 to 0.93 at UDC and 0.01 to 0.74 at WS80. Variability in event runoff generation was attributed to seasonal trends in water table elevation fluctuation as regulated by evapotranspiration. Groundwater elevation breakpoints for each watershed were identified based on antecedent water table elevation, streamflow, ROCs, and TSRs. These thresholds represent the groundwater elevation above which event runoff generation increased sharply in response to rainfall. For effective coastal land use decision making, baseline watershed hydrology must be understood to serve as a benchmark for management goals, based on both seasonal and event‐based surface and groundwater interactions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here