Open Access
Experimental old nest material predicts hoopoe Upupa epops eggshell and uropygial gland microbiota
Author(s) -
DíazLora Silvia,
MartínVivaldi Manuel,
Juárez GarcíaPelayo Natalia,
Azcárate García Manuel,
RodríguezRuano Sonia M.,
MartínezBueno Manuel,
Soler Juan José
Publication year - 2019
Publication title -
journal of avian biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.022
H-Index - 76
eISSN - 1600-048X
pISSN - 0908-8857
DOI - 10.1111/jav.02083
Subject(s) - nest (protein structural motif) , biology , feather , zoology , ecology , eggshell , nest box , predation , biochemistry
Nest re‐use in birds has the potential cost of infection by parasites and pathogens but may also be a source of beneficial symbiotic bacteria transmitted horizontally. Eurasian hoopoes Upupa epops host antibiotic‐producing bacteria in their uropygial gland but only while breeding, which suggests that the nest‐hole may be a source of those symbionts. Interestingly, hoopoes do not build nests, thus might prefer for reproduction nest holes with soft materials from previous reproductions. Here, we tested experimentally this preference by installing in the field new nest boxes that were left empty or filled with either sawdust or a mixture of sawdust and hoopoe's nest material from the previous year. We explored the experimental effect on the composition of the uropygial secretion bacterial community, on eggshell bacterial loads, and on several proxies of reproductive success. Hoopoes bred significantly more often in nest boxes with nest material than in empty ones, but the type of nest material did not affect nest box occupancy. Eggs in nest boxes with old‐soft material harbored higher bacterial density on their shells, and the microbiota of the uropygial secretion of nestlings and females in these nest boxes differed from those in nest boxes without old‐soft material. Moreover, although the experiment did not affect breeding success or related proxies, several operational taxonomic units from female uropygial secretions were positively associated with hatching success. This is the first experimental evidence showing that re‐used nest material affects the bacterial community of the uropygial secretions of hoopoe females. This suggests that the nest material can be a source of strains for their incorporation to both the uropygial gland and eggshell communities, highlighting a possible advantage of nest re‐use previously unconsidered.