z-logo
open-access-imgOpen Access
Sons do not take advantage of a head start: parity in herring gull offspring sex ratios despite greater initial investment in males
Author(s) -
Bonter David N.,
Moglia Michelle C.,
DeFisher Luke E.
Publication year - 2016
Publication title -
journal of avian biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.022
H-Index - 76
eISSN - 1600-048X
pISSN - 0908-8857
DOI - 10.1111/jav.00649
Subject(s) - biology , fledge , offspring , sex ratio , population , hatching , parental investment , sex allocation , demography , parent–offspring conflict , nest (protein structural motif) , reproductive success , zoology , ecology , pregnancy , genetics , biochemistry , sociology
Skewed adult sex ratios sometimes occur in populations of free‐living animals yet the proximate mechanisms, timing of sex‐biases, and the selective agents contributing to skew remain a source of debate with contradictory evidence from different systems. We investigated potential mechanisms contributing to sex biases in a population of herring gulls with an apparent female skew in the adult population. Theory predicts that skewed adult sex ratios will adaptively lead to skewed offspring sex ratios to restore balance in the effective breeding population. Parents may also adaptively bias offspring sex ratios to increase their own fitness in response to environmental factors. Therefore, we expected to detect skewed sex ratios either at hatching or at fledging as parents invest differentially in offspring of different sexes. We sampled complete clutches (n = 336 chicks) at hatching to quantify potential skews in sex ratios by position in the hatch order, time of season, year, and nesting context (nest density), finding no departure from equal sex ratios at hatching related to any of these factors. Further, we sampled 258 chicks at near‐fledging to investigate potential sex biases in survival at the chick stage. Again, no biases in sex ratios were recorded. Male offspring were favored in this population via greater maternal investment in eggs carrying male embryos and greater parental provisioning of male offspring which reached greater sizes by fledging. Despite the advantages realized by male offspring, females were equally as likely to fledge as males. Thus, biased adult sex ratios apparently arise in the post‐fledging and pre‐recruitment stage in our population.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here