z-logo
open-access-imgOpen Access
Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales
Author(s) -
Vansteelant W. M. G.,
Bouten W.,
Klaassen R. H. G.,
Koks B. J.,
Schlaich A. E.,
van Diermen J.,
van Loon E. E.,
ShamounBaranes J.
Publication year - 2015
Publication title -
journal of avian biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.022
H-Index - 76
eISSN - 1600-048X
pISSN - 0908-8857
DOI - 10.1111/jav.00457
Subject(s) - seasonality , atmospheric sciences , environmental science , biology , meteorology , ecology , geography , geology
Given that soaring birds travel faster with supportive winds or in good thermal soaring conditions, we expect weather conditions en route of migration to explain commonly observed regional and seasonal patterns in the performance of soaring migrants. We used GPS‐loggers to track 13 honey buzzards and four Montagu's harriers for two to six migrations each. We determined how tailwinds, crosswinds, boundary layer height (a proxy for thermal convection) and precipitation affected hourly speeds, daily distances and daily mean speeds with linear regression models. Honey buzzards mostly travel by soaring while Montagu's harriers supplement soaring with flapping. Therefore, we expect that performance of harriers will be less affected by weather than for buzzards. Weather conditions explained between 30 and 50% of variation in migration performance of both species. Tailwind had the largest effect on hourly speeds, daily mean speeds and daily travel distances. Honey buzzards travelled significantly faster and farther, and Montagu's harriers non‐significantly faster, under better convective conditions. Honey buzzards travelled at slower speeds and shorter distances in crosswinds, whereas harriers maintained high speeds in crosswinds. Weather conditions varied between regions and seasons, and this variation accounted for nearly all regional and seasonal variation in flight performance. Hourly performance was higher than predicted at times when we suspect birds had switched to intermittent or continuous flapping flight, for example during sea‐crossings. The daily travel distance of Montagu's harriers was determined to a significant extent by their daily travel time, which differed between regions, possibly also due to weather conditions. We conclude with the implications of our work for studies on migration phenology and we suggest an important role for high‐resolution telemetry in understanding migratory behavior across entire migratory journeys.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here