
Temporal patterns of avian body size reflect linear size responses to broadscale environmental change over the last 50 years
Author(s) -
Gardner Janet L.,
Amano Tatsuya,
Backwell Patrica R. Y.,
Ikin Karen,
Sutherland William J.,
Peters Anne
Publication year - 2014
Publication title -
journal of avian biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.022
H-Index - 76
eISSN - 1600-048X
pISSN - 0908-8857
DOI - 10.1111/jav.00431
Subject(s) - passerine , biology , bergmann's rule , climate change , ecology , phenology , macroecology , allometry , variation (astronomy) , environmental change , scale (ratio) , zoology , biodiversity , geography , latitude , physics , geodesy , astrophysics , cartography
Alongside well researched shifts in species' distributions and phenology, reduction in the body size of organisms has been suggested as a third universal response to contemporary climate change. Despite mounting evidence for declining body size, several recent reviews highlight studies reporting increases in body size or no change over time. This variability in response may derive from the geographic scale of contributing studies, masking species‐level responses to broad‐scale environmental change and instead reflecting local influences on single populations. Using museum specimens, we examine temporal patterns of body size of 24 Australian passerine species, sampling multiple populations across the geographic ranges of each species between 1960 and 2007. Generalised additive models indictated that the majority (67%) of species showed important inter‐annual body size variation, and there was striking cross‐species similarity in temporal size patterns. Most displayed near‐linear or linear, unidirectional size trends, suggesting a pervasive and directional change in environmental conditions, consistent with climate change. For species showing linear size responses, the absolute rate of size change ranged between 0.016 and 0.114% of body size (wing length) per year, consistent with studies on other continents. Overall, 38% (9/24) of species showed temporal declines in body size and 21% (5/24) showed increases, consistent with the variability and direction of size responses thus far documented among populations; declining body size is a pervasive response to climate change but it is not universal.