Premium
Steam oxidation of ytterbium disilicate environmental barrier coatings with and without a silicon bond coat
Author(s) -
Kane Ken A.,
Garcia Eugenio,
Uwanyuze Sharon,
Lance Michael,
Unocic Kinga A.,
Sampath Sanjay,
Pint Bruce A.
Publication year - 2021
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.17650
Subject(s) - materials science , layer (electronics) , silicon , composite material , ytterbium , coating , metallurgy , doping , optoelectronics
Abstract The current generation of multilayer Si/Yb 2 Si 2 O 7 environmental barrier coatings (EBCs) are temperature limited by the melting point of Si, 1414°C. To investigate higher temperature EBCs, the cyclic steam oxidation of EBCs comprised of a single layer of ytterbium disilicate (YbDS) was compared to multilayered Si/YbDS EBCs, both deposited on SiC substrates using atmospheric plasma spray. After 500 1‐h cycles at 1300°C in 90 vol%H 2 O‐10 vol%air with a gas velocity of 1.5 cm/s, both multilayer Si/YbDS and single layer YbDS grew thinner silica scales than bare SiC, with the single layer YbDS forming the thinnest scale. Both coatings remained fully adherent and showed no signs of delamination. Silica scales formed on the single layer coating were significantly more homogeneous and possessed a markedly lower degree of cracking compared to the multilayered EBC. The single layer EBC also was exposed at 1425°C in steam with a gas velocity of 14 cm/s in an alumina reaction tube. The EBC reduced specimen mass loss compared to bare SiC but formed an extensive 2nd phase aluminosilicate reaction product. A similar reaction product was observed to form on some regions of the bare SiC specimen and appeared to partially inhibit silica volatilization. The 1425°C steam exposures were repeated with a SiC reaction tube and no 2nd phase reaction product was observed to form on the single layer EBC or bare SiC.