Premium
Nondestructive measurements of residual stress in air plasma‐sprayed thermal barrier coatings
Author(s) -
Jiang Peng,
Yang Liuyu,
Sun Yongle,
Li Dingjun,
Wang Tiejun
Publication year - 2021
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.17550
Subject(s) - thermal barrier coating , materials science , residual stress , composite material , delamination (geology) , spallation , acoustic emission , forensic engineering , ceramic , geology , physics , quantum mechanics , paleontology , engineering , neutron , subduction , tectonics
Premature spallation of thermal barrier coatings (TBCs) is a critical issue during the service of gas turbines, and nondestructive evaluation is crucial to address this problem. Herein, a novel approach that indicates delamination by measuring the residual stress evolution of thermally grown oxide (TGO) for air plasma spraying (APS) TBCs is proposed and verified via the combination of photoluminescence piezo‐spectroscopy (PLPS) and X‐ray computed tomography. A mineral‐oil‐impregnating approach and a cold‐mount low‐shrinkage epoxy‐mounting approach are used to alleviate the signal attenuation by pores and microcracks in APS TBCs, improving the detectable PLPS signal and X‐ray transmission for stress measurement and delamination characterization, respectively. We have nondestructively measured the TGO residual stress mapping in APS TBCs and its evolution with oxidation. Furthermore, the evolution of TGO morphology and critical microcracks are obtained by X‐ray computed tomography. The synchronous evolution of TGO residual stress, TGO thickness, and critical microcracks as a function of oxidation time is obtained and correlated. The transition point, as experimentally identified, at which the TGO stress starts to drop, agrees well with the critical moment of microcrack coalescence. This directly verifies that the TBC delamination can be effectively indicated by residual stress evolution of TGO in APS TBCs.