z-logo
Premium
Strength of single‐phase high‐entropy carbide ceramics up to 2300°C
Author(s) -
Feng Lun,
Chen WeiTing,
Fahrenholtz William G.,
Hilmas Gregory E.
Publication year - 2021
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.17443
Subject(s) - flexural strength , materials science , composite material , relative density , ceramic , fracture toughness , grain size , carbide , vickers hardness test , dislocation , hot pressing , microstructure
The mechanical properties of single‐phase (Hf,Zr,Ti,Ta,Nb)C high‐entropy carbide (HEC) ceramics were investigated. Ceramics with relative density >99% and an average grain size of 0.9 ± 0.3 µm were produced by a two‐step process that involved carbothermal reduction at 1600°C and hot pressing at 1900°C. At room temperature, Vickers hardness was 25.0 ± 1.0 GPa at a load of 4.9 N, Young's modulus was 450 GPa, chevron notch fracture toughness was 3.5 ± 0.3 MPa·m 1/2 , and four‐point flexural strength was 421 ± 27 MPa. With increasing temperature, flexural strength stayed above ~400 MPa up to 1800°C, then decreased nearly linearly to 318 ± 21 MPa at 2000°C and to 93 ± 10 MPa at 2300°C. No significant changes in relative density or average grain size were noted after testing at elevated temperatures. The degradation of flexural strength above 1800°C was attributed to a decrease in dislocation density that was accompanied by an increase in dislocation motion. These are the first reported flexural strengths of HEC ceramics at elevated temperatures.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here