Premium
Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding
Author(s) -
Vu Anh Tuan,
Vu Anh Ngoc,
Grunwald Tim,
Bergs Thomas
Publication year - 2020
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.16963
Subject(s) - materials science , borosilicate glass , viscoelasticity , creep , composite material , compression molding , molding (decorative) , viscosity , compression (physics) , chalcogenide glass , relaxation (psychology) , atmospheric temperature range , glass transition , polymer , thermodynamics , chalcogenide , metallurgy , mold , psychology , social psychology , physics
In glass compression molding, most current modeling approaches of temperature‐dependent viscoelastic behavior of glass materials are restricted to thermo‐rheologically simple assumption. This research conducts a detailed study and demonstrates that this assumption, however, is not adequate for glass molding simulations over a wide range of molding temperatures. In this paper, we introduce a new method that eliminates the prerequisite of relaxation functions and shift factors for modeling of the thermo‐viscoelastic material behavior. More specifically, the temperature effect is directly incorporated into each parameter of the mechanical model. The mechanical model parameters are derived from creep displacements using uniaxial compression experiments. Validations of the proposed method are conducted for three different glass categories, including borosilicate, aluminosilicate, and chalcogenide glasses. Excellent agreement between the creep experiments and simulation results is found in all glasses over long pressing time up to 900 seconds and a large temperature range that corresponds to the glass viscosity of log ( η ) = 9.5 – 6.8 Pas. The method eventually promises an enhancement of the glass molding simulation.