Premium
Temperature‐dependent fracture strength of whisker‐reinforced ceramic composites: Modeling and factor analysis
Author(s) -
Shao Jiaxing,
Li Weiguo,
Li Ying,
Deng Yong,
Zhang Xianhe,
Kou Haibo,
Xu Niandong,
Zhang Xuyao,
Ma Jianzuo,
Chen Liming,
Qu Zhaoliang
Publication year - 2019
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.16130
Subject(s) - whisker , materials science , composite material , flexural strength , ceramic , thermal expansion , volume fraction , ceramic matrix composite , fracture (geology) , modulus
In this study, a temperature‐dependent fracture strength model for whisker‐reinforced ceramic composites was developed. This model considers the strength degradation of both whisker and ceramic matrix at elevated temperatures, as well as the evolution of residual thermal stress with temperature. It was verified by comparison with the available flexural strengths of five types of whisker‐reinforced ceramic composites at different temperatures, and good agreement between the model predictions and the experimental data is obtained. Moreover, based on the established model, we systematically analyzed the effects of six influencing factors, including the volume fraction and the aspect ratio of whisker, the Young's modulus of matrix and whisker, the thermal expansion coefficient difference and the stress‐free temperature, on the temperature‐dependent flexural strengths of whisker‐reinforced ceramic composites. Some new insights which could help optimize and improve the temperature‐dependent fracture strength of whisker‐reinforced ceramic composites are obtained.