z-logo
Premium
Synthesis of monodisperse CeO 2 –ZrO 2 particles exhibiting cyclic superelasticity over hundreds of cycles
Author(s) -
Du Zehui,
Ye Pengcheng,
Zeng Xiao Mei,
Schuh Christopher A.,
Tamura Nobumichi,
Zhou Xinran,
Gan Chee Lip
Publication year - 2017
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.14972
Subject(s) - pseudoelasticity , materials science , synchrotron , ceramic , annealing (glass) , composite material , nanotechnology , microstructure , optics , physics , martensite
Nano‐ and microscale CeO 2 –ZrO 2 ( CZ ) shape memory ceramics are promising materials for smart micro‐electro‐mechanical systems ( MEMS ), sensing, actuation and energy damping applications, but the processing science for scalable production of such small volume ceramics has not yet been established. Herein, we report a modified sol‐gel method to synthesize highly monodisperse spherical CZ particles with diameters in the range of ~0.8‐3.0 μm. Synchrotron X‐ray micro‐diffraction (μ SXRD ) confirmed that most of the particles are single crystal after annealing at 1450°C. Having a monocrystalline structure and a small specimen length scale, the particles exhibit significantly enhanced shape memory and superelasticity properties with up to ~4.7% compression being completely recoverable. Highly reproducible superelasticity through over five hundred strain cycles, with dissipated energy up to ~40 MJ /m 3 per cycle, is achieved in the CZ particles containing 16 mol% ceria. This cycling capability is enhanced by ten times compared with our first demonstration using micropillars (only 50 cycles in Lai et al, Science, 2013, 341, 1505 ). Furthermore, the effects of cycling and testing temperature (in 25°C‐400°C) on superelasticity have been investigated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here