z-logo
Premium
Processing, Mechanical Characterization, and Alkali Resistance of SiliconBoronOxycarbide ( SiBOC ) Glass Fibers
Author(s) -
Nguyen Van Lam,
Proust Vanessa,
Quievryn Caroline,
Bernard Samuel,
Miele Philippe,
Soraru Gian Domenico
Publication year - 2014
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.13132
Subject(s) - ultimate tensile strength , borosilicate glass , materials science , alkali metal , composite material , glass fiber , spinning , modulus , sol gel , chemistry , nanotechnology , organic chemistry
A borosilicate sol–gel solution is synthesized using a mixture of methyltriethoxysilane, dimethyldiethoxysilane, and boric acid. SiBOC gel fibers are produced from the as‐synthesized sol–gel solution using a spinning apparatus. Subsequently, SiBOC glass fibers are prepared through pyrolysis under argon atmosphere at 1000°C and 1200°C. Mechanical properties of the SiBOC glass fibers are studied by measuring the tensile strength and the elastic modulus. The results show a high tensile strength −1300 and 1058 MPa, and a high Young modulus −79 and 95.5 GPa, for the fibers prepared at 1000°C and 1200°C, respectively. Furthermore, alkali resistance of the SiBOC fibers is investigated by measuring the tensile strength after soaking them for 20 h in NaOH and Ca ( OH ) 2 solutions at 100°C. For comparison, the same measurements are performed on commercial AR and E glass fibers. The SiBOC fibers show excellent alkaline resistance and perform better than commercial AR fibers. Indeed, SiBOC fibers retain 80%–90% of the initial strength after Ca ( OH ) 2 attack.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom