Premium
Electric Fatigue of Lead‐Free Piezoelectric Materials
Author(s) -
Glaum Julia,
Hoffman Mark
Publication year - 2014
Publication title -
journal of the american ceramic society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.9
H-Index - 196
eISSN - 1551-2916
pISSN - 0002-7820
DOI - 10.1111/jace.12811
Subject(s) - piezoelectricity , materials science , lead (geology) , electric field , ceramic , composite material , physics , quantum mechanics , geomorphology , geology
A considerable body of knowledge now exists from studies involving the development of lead‐free piezoelectric ceramics and a number of high potential alternatives to current lead‐based materials have been identified. Stability under cyclic electric fields is an important property of piezoelectric materials. Here, we review the research to date which shows that fatigue under cyclic electrical loading is prevalent in many lead‐free piezoelectric ceramic compositions. However, the variety of compositions and mechanisms for piezoelectric behavior in these materials corresponds to significant variances in the nature of fatigue degradation and the likely mechanisms thereof, which do not directly parallel those of well‐studied lead‐based materials. In particular, the use of field‐induced phase changes as an actuation mechanism provides distinctive fatigue behaviors. Particular attention is given to fatigue of ferroelectric and relaxor (ergodic and nonergodic) structures and their dependence upon temperature and electric field and the potential design of materials with high fatigue resistance.