Premium
Growth and nutrition of cowpea ( Vigna unguiculata ) under water deficit as influenced by microbial inoculation via seed coating
Author(s) -
Rocha Inês,
Ma Ying,
Vosátka Miroslav,
Freitas Helena,
Oliveira Rui S.
Publication year - 2019
Publication title -
journal of agronomy and crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.095
H-Index - 74
eISSN - 1439-037X
pISSN - 0931-2250
DOI - 10.1111/jac.12335
Subject(s) - vigna , biology , inoculation , shoot , agronomy , chlorophyll , pseudomonas putida , microbial inoculant , biomass (ecology) , phosphorus , horticulture , chemistry , bacteria , genetics , organic chemistry
Abstract Drought can drastically reduce cowpea [ Vigna unguiculata (L.) Walp.] biomass and grain yield. The application of plant growth‐promoting rhizobacteria and arbuscular mycorrhizal fungi can confer resistance to plants and reduce the effects of environmental stresses, including drought. Seed coating is a technique which allows the application of minor amounts of microbial inocula. Main effects of the factors inoculation and water regime showed that: severe or moderate water deficit had a general negative impact on cowpea plants; total biomass production, seed weight and seed yield were enhanced in plants inoculated with P. putida ; inoculation of R. irregularis significantly increased nitrogen (N) and phosphorus (P) shoot concentrations; and R. irregularis enhanced both chlorophyll b and carotenoids contents, particularly under severe water deficit. Plants inoculated with P. putida + R. irregularis had an increase in shoot P concentration of 85% and 57%, under moderate and severe water deficit, respectively. Singly inoculated P. putida improved potassium shoot concentration by 25% under moderate water deficit. Overall, in terms of agricultural productivity the inoculation of P. putida under water deficit might be promising. Seed coating has the potential to be used as a large‐scale delivery system of beneficial microbial inoculants.