z-logo
Premium
Electromyographic and kinematic indicators of fatigue in horses: a pilot study
Author(s) -
COLBORNE G. R.,
BIRTLES D. M.,
CACCHIONE I. C.
Publication year - 2001
Publication title -
equine veterinary journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.82
H-Index - 87
eISSN - 2042-3306
pISSN - 0425-1644
DOI - 10.1111/j.2042-3306.2001.tb05367.x
Subject(s) - stride , kinematics , treadmill , electromyography , trunk , horse , physical medicine and rehabilitation , muscle fatigue , medicine , withers , mathematics , physical therapy , physics , geology , biology , ecology , paleontology , classical mechanics , body weight
Summary Muscle fatigue can be quantified using Fourier analysis of the recorded EMG signal. Median frequency is the frequency at which the Fourier profile is bisected, and this measure typically shifts to smaller values during fatigue. This technique was combined with kinematic analysis to describe the time course of fatigue in horses galloping on an inclined treadmill. It was hypothesised that EMG median frequency would decrease in tandem with changes in kinematic variables through the exercise test. Three fit Thoroughbred horses had retroreflective markers placed on their hooves and withers. Surface electrodes were attached to the skin over the forelimb deltoid muscle. After warm‐up at walk and trot, each horse galloped at 110% VO 2max on a treadmill inclined to 7.5% until fatigue onset. Kinematic data were recorded at 200 Hz for 5 s at 30s intervals, and raw EMG data were recorded at 1024 Hz for 3 s at 15 s intervals. Fatigue onset was the point in time when the horse could not keep up with the treadmill speed with minimal encouragement. One horse performed the entire exercise test on the same lead, while the other 2 horses changed leads periodically, interrupting the changes in both the EMG and kinematic measurements. Overall, through the course of the trials, mean stride length increased by 0.34 m and stride duration increased by 0.03 s. Vertical excursion of the trunk marker increased by 0.03 m. For the horse that did not change lead, median frequency of the EMG signal decreased by 36%. In the other 2 horses, lead changes were interspersed between smaller decreases in median frequency, whereupon median frequency recovered to starting levels immediately following a lead change. The median frequency decreased by 12‐20% between lead changes. Kinematic changes are more global indictors of fatigue, while the EMG indicators are dependent upon lead changes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here