Premium
Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue
Author(s) -
ESSÉNGUSTAVSSON BIRGITTA,
GOTTLIEBVEDI MARIANNE,
LINDHOLM A.
Publication year - 1999
Publication title -
equine veterinary journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.82
H-Index - 87
eISSN - 2042-3306
pISSN - 0425-1644
DOI - 10.1111/j.2042-3306.1999.tb05238.x
Subject(s) - hypoxanthine , medicine , uric acid , xanthine , endocrinology , inosine monophosphate , treadmill , physical exercise , purine , chemistry , glycogen , amp deaminase , inosine , adenosine , biochemistry , nucleotide , adenosine deaminase , gene , enzyme
Summary The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48–58 min at 7 m/s and 10–15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.