z-logo
Premium
Micropillar Testing of Amorphous Silica
Author(s) -
Lacroix Rémi,
Chomienne Vincent,
Kermouche Guillaume,
Teisseire Jérémie,
Barthel Etienne,
Queste Samuel
Publication year - 2012
Publication title -
international journal of applied glass science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.383
H-Index - 34
eISSN - 2041-1294
pISSN - 2041-1286
DOI - 10.1111/j.2041-1294.2011.00075.x
Subject(s) - materials science , amorphous solid , hardening (computing) , constitutive equation , composite material , strain hardening exponent , plasticity , elastic modulus , amorphous metal , finite element method , structural engineering , crystallography , engineering , chemistry , alloy , layer (electronics)
Amorphous silica exhibits a complex mechanical response. The elastic regime is highly nonlinear while plastic flow does not conserve volume, resulting in densification. As a result the quantification of a reliable constitutive equation is a difficult task. We have assessed the potential of micropillar compression testing for the investigation of the micromechanical properties of amorphous silica. We have calculated the response of amorphous silica micropillars as predicted by finite element analysis. The results were compared to preliminary microcompression tests. In the calculations, an advanced constitutive law including plastic response, densification, and strain hardening was used. Special attention was paid to the evaluation of the impact of substrate compliance, pillar misalignment, and friction conditions. We find that amorphous silica is much more amenable than some metals to microcompression experiments due to a comparatively high ratio between yield stress and elastic modulus. The simulations are found to be very consistent with the experimental results. However, full agreement cannot be obtained without allowance for the nonlinear response of amorphous silica in the elastic regime.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here