z-logo
Premium
Nanoindentation of Soda Lime–Silica Glass: Effect of Loading Rate
Author(s) -
Dey Arjun,
Chakraborty Riya,
Mukhopadhyay Anoop Kumar
Publication year - 2011
Publication title -
international journal of applied glass science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.383
H-Index - 34
eISSN - 2041-1294
pISSN - 2041-1286
DOI - 10.1111/j.2041-1294.2011.00046.x
Subject(s) - nanoindenter , nanoindentation , materials science , composite material , soda lime glass , strain rate , deformation (meteorology) , soda lime , radius , silica glass , computer security , computer science
Structural and mechanical reliability of glass for both conventional and advanced applications is determined by the rate at which it can deform and sustain externally applied static or dynamic strain at the microstructural length scale. Hence, a large number of nanoindentation experiments were conducted on a thin (∼300 μm) commercial soda lime–silica glass with a 150 nm radius Berkovich tip at a constant load of 10,000 μN as a function of variations in the loading rates in the range of 10–20,000 μN/s. The results showed that the nanohardness of the soda lime–silica glass increased by as much as 74% as the loading rate was increased from 10 to 20,000 μN/s. Further, the presence of serrations in load–depth plots and deformation band formations inside the nanoindentaion cavities were more vividly observed in the nanoindentation experiments conducted at lower loading rates rather than those conducted at higher loading rates. These results are explained in terms of shear stress acting underneath the indenter as well as the time scale of interaction between the nanoindenter and the weak links at local microstructural length scale, which owe their origin to the subtle variations in the composition of the given glass.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here