Premium
Aggregation, intraguild interactions and the coexistence of competitors on small ephemeral patches
Author(s) -
Reader Tom,
Cornell Stephen J.,
Rohani Pejman
Publication year - 2006
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/j.2006.0030-1299.15199.x
Subject(s) - intraspecific competition , intraguild predation , interspecific competition , guild , competition (biology) , biology , ecology , coexistence theory , ephemeral key , storage effect , predation , habitat , predator
It is well established that intraspecific aggregation has the potential to promote coexistence in communities of species competing for patchy ephemeral resources. We developed a simulation model to explore the influence of aggregation on coexistence in such communities when an important assumption of previous studies – that interspecific interactions have only negative effects on the species involved – is relaxed. The model describes a community of competing insect larvae in which an interaction that is equivalent to intraguild predation (IGP) can occur, and is unusual in that it considers species exploiting very small resource patches (carrying capacity=1). Model simulations show that, in the absence of any intraspecific aggregation, variation between species in the way that resource heterogeneity affects survival increases the likelihood of species coexistence. Simulations also show that intraspecific aggregation of the dominant competitor's eggs across resource patches can promote coexistence by reducing the importance of interspecific competition relative to that of intraspecific competition. Crucially, however, this effect is altered if one competitor indulges in IGP. In general, coexistence is only possible when the species that is capable of IGP is less effective at exploiting the shared resource than its competitor. Because it reduces the relative importance of interspecific interactions, intraspecific aggregation of the eggs of a species that is the victim of IGP actually reduces the likelihood of coexistence in parts of parameter space in which the persistence of the other species is dependent on its ability to exploit its competitor. Since resource heterogeneity, intraspecific aggregation and IGP are all common phenomena, these findings shed light on mechanisms that are likely to influence diversity in communities exploiting patchy resources.