Premium
A global rain of micrometeorites following breakup of the L‐chondrite parent body—Evidence from solar wind‐implanted Ne in fossil extraterrestrial chromite grains from China
Author(s) -
ALWMARK C.,
SCHMITZ B.,
MEIER M. M. M.,
BAUR H.,
WIELER R.
Publication year - 2012
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2012.01394.x
Subject(s) - parent body , chondrite , geology , meteorite , astrobiology , extraterrestrial life , ordovician , chromite , geochemistry , ordinary chondrite , asteroid , breakup , interplanetary dust cloud , solar system , psychology , physics , psychoanalysis
– Previous studies of limestone beds of mid‐Ordovician age from both Sweden and China show that the Earth saw an at least two orders of magnitude increase in the influx of extraterrestrial material approximately 470 Ma, following the disruption of an L‐chondrite parent body in the asteroid belt. Recovered extraterrestrial material consists of fossil meteorites and sediment‐dispersed extraterrestrial chromite (SEC) grains, both with L‐chondritic origin. Ne isotope analysis of SEC grains from one of the Swedish limestone sections revealed that the vast majority of the grains were delivered to Earth as micrometeorites. In this study, we extend the previous work, both in time and geographically, by measuring concentrations and isotopic ratios of Ne in individual SEC grains (60–120 μm in diameter) from three different beds from a contemporary Middle Ordovician limestone section in China. All of the Chinese SEC grains, 44 in total, contain surface‐implanted Ne of fractionated solar wind composition, implying that these grains were, as in the case of the Swedish SEC grains, delivered to Earth as micrometeorites. This gives further compelling evidence that the two to three orders of magnitude increase in the influx of micrometeoritic material following the breakup of the L‐chondrite parent body was indeed a global event. The rain of micrometeorites prevailed for at least 2 Myr (the estimated time of the deposition of the topmost Chinese bed) after the breakup event.