Premium
Physical properties of the Yaxcopoil‐1 deep drill core, Chicxulub impact structure, Mexico
Author(s) -
ELBRA Tiiu,
PESONEN Lauri J.
Publication year - 2011
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2011.01253.x
Subject(s) - geology , lithology , impact structure , drilling , earth's magnetic field , scientific drilling , mineralogy , geochemistry , geophysics , paleomagnetism , materials science , magnetic field , astrobiology , impact crater , physics , quantum mechanics , metallurgy
– The Chicxulub structure in Mexico, one of the largest impact structures on Earth, was formed 65 Ma by a hypervelocity impact that led to the large mass extinction at the K‐Pg boundary. The Chicxulub impact structure is well preserved, but is buried beneath a sequence of carbonate sediments and, thus, requires drilling to obtain subsurface information. The Chicxulub Scientific Drilling Program was carried out at Hacienda Yaxcopoil in the framework of the International Continental Scientific Drilling Program in 2001–2002. The structure was cored from 404 m down to 1511 m, through three intervals: 794 m of postimpact Tertiary sediments, a 100 m thick impactite sequence, and 616 m of preimpact Cretaceous rocks thought to represent a suite of megablocks. Physical property investigations show that the various lithologies, including the impactite units and the K‐Pg boundary layer, can be characterized by their physical properties, which depend on either changes in fabric or on mineralogical variations. The magnetic properties show mostly dia‐ or paramagnetic behavior, with the exception of the impactite units that indicate the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The magnetic fraction contributes mainly to enhanced magnetization in the impactite lithologies and, in this way, to the observed magnetic anomalies. The shape and orientation of the magnetic grains are varied and reflect inhomogeneous fabric development and the influence of impact‐related redeposition and hydrothermal activity. The Chicxulub impact occurred at the time of the reverse polarity geomagnetic chron 29R, and this finding is consistent with the age of the K‐Pg boundary.