z-logo
Premium
Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy
Author(s) -
WOZNIAKIEWICZ Penelope J.,
ISHII Hope A.,
KEARSLEY Anton T.,
BURCHELL Mark J.,
BLAND Philip A.,
BRADLEY John P.,
DAI Zurong,
TESLICH Nick,
COLLINS Gareth S.,
COLE Mike J.,
RUSSELL Sara S.
Publication year - 2011
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2011.01206.x
Subject(s) - hypervelocity , scanning electron microscope , comet , transmission electron microscopy , electron microprobe , analytical chemistry (journal) , pyrrhotite , mineralogy , sulfide , iron sulfide , interplanetary dust cloud , materials science , impact crater , astrobiology , geology , chemistry , metallurgy , composite material , nanotechnology , environmental chemistry , physics , solar system , sulfur , thermodynamics
– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s −1 , it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here