Premium
Spectral characteristics of lunar impact melts and inferred mineralogy
Author(s) -
TOMPKINS Stefanie,
PIETERS Carlé M.
Publication year - 2010
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2010.01074.x
Subject(s) - plagioclase , breccia , microcrystalline , geology , igneous rock , mineralogy , geology of the moon , ilmenite , porphyritic , context (archaeology) , meteorite , pyroxene , texture (cosmology) , melt inclusions , geochemistry , astrobiology , olivine , basalt , paleontology , quartz , physics , artificial intelligence , computer science , image (mathematics)
– Two suites of lunar impact melt samples have been measured in NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. Suite 1 comprises seven Apollo 17 crystalline impact melt breccias and seven quenched glass equivalents. Suite 2 is made up of 15 additional impact melt samples (from Apollo 12, 15, 16, and 17) which exhibit a range of textures and compositions related to cooling conditions and glass abundance. A few of these samples have cooled slowly and fully crystallized, and thus have the same spectral properties as igneous rocks of similar texture and composition; they cannot be uniquely distinguished without geologic context. However, most of the impact melts and melt breccias contain either quantities of quenched glass and/or have developed microcrystalline nonequilibrium textures with well‐defined, diagnostic spectral properties. The microcrystalline textures are associated with a distinctive 600 nm absorption feature, apparently due to submicroscopic ilmenite inclusions in a transparent host (typically fine‐grained plagioclase). The reflectance properties of these lunar sample suites contribute to and constrain the identification and characterization of impact melts in remote sensing data.