z-logo
Premium
Asteroid photometric and polarimetric phase curves: Joint linear‐exponential modeling
Author(s) -
Muin K.,
Penttilä A.,
Cellino A.,
Belskaya I. N.,
Delbò M.,
LevasseurRegourd A. C.,
Tedesco E. F.
Publication year - 2009
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2009.tb02003.x
Subject(s) - asteroid , polarimetry , physics , markov chain monte carlo , polarization (electrochemistry) , monte carlo method , exponential function , astrophysics , brightness , stokes parameters , light curve , computational physics , statistical physics , astronomy , optics , mathematics , statistics , mathematical analysis , scattering , chemistry
— We present Markov‐Chain Monte‐Carlo methods (MCMC) for the derivation of empirical model parameters for photometric and polarimetric phase curves of asteroids. Here we model the two phase curves jointly at phase angles ≤25° using a linear‐exponential model, accounting for the opposition effect in disk‐integrated brightness and the negative branch in the degree of linear polarization. We apply the MCMC methods to V‐band phase curves of asteroids 419 Aurelia (taxonomic class F), 24 Themis (C), 1 Ceres (G), 20 Massalia (S), 55 Pandora (M), and 64 Angelina (E). We show that the photometric and polarimetric phase curves can be described using a common nonlinear parameter for the angular widths of the opposition effect and negative‐polarization branch, thus supporting the hypothesis of common physical mechanisms being responsible for the phenomena. Furthermore, incorporating polarimetric observations removes the indeterminacy of the opposition effect for 1 Ceres. We unveil a trend in the interrelation between the enhancement factor of the opposition effect and the angular width: the enhancement factor decreases with decreasing angular width. The minimum polarization and the polarimetric slope at the inversion angle show systematic trends when plotted against the angular width and the normalized photometric slope parameter. Our new approach allows improved analyses of possible similarities and differences among asteroidal surfaces.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here