z-logo
Premium
Acrylic embedding of Stardust particles encased in aerogel
Author(s) -
Matrajt G.,
Brownlee D. E.
Publication year - 2006
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2006.tb00447.x
Subject(s) - aerogel , acrylic resin , materials science , epoxy , mars exploration program , composite material , embedding , astrobiology , computer science , physics , coating , artificial intelligence
— Ultramicrotomy of samples embedded in epoxy resin is a standard method for preparing ultra‐thin sections for electron microscopy. In this report we describe a new embedding technique that uses acrylic resin instead of epoxy. This method offers several important advantages for sectioning small extraterrestrial samples. One is that the acrylic resin is soluble and can be removed after ultramicrotomy to leave a sample that is free of the mounting media. This is important for studying carbon and insoluble organic components. A second major advantage of acrylic is that, when combined with pre‐embedding compression, it provides a very effective method of mounting samples collected in silica aerogel. Acrylic embedding is currently being used to mount comet particles collected by NASA's Stardust mission. Combined with a flattening process, the acrylic embedding and sectioning preserves all pieces of collected samples in their collection matrix. In addition to Stardust, acrylic may be applied to other samples collected in aerogel such as those from the Russian Mir space station (Hörz et al. 2000) and future missions such as Sample Collection for Investigation of Mars (SCIM) (Leshin 2003), a proposed mission to collect atmospheric dust particles from Mars.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here