Premium
The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites
Author(s) -
HOPFE W. D.,
GOLDSTEIN J. I.
Publication year - 2001
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2001.tb01815.x
Subject(s) - kamacite , meteorite , chemistry , physics , chondrite , astronomy
— A major revision of the current Saikumar and Goldstein (1988) cooling rate computer model for kamacite growth is presented. This revision incorporates a better fit to the α/α + γ phase boundary and to the γ/α + γ phase boundary particularly below the monotectoid temperature of 400 °C. A reevaluation of the latest diffusivities for the Fe‐Ni system as a function of Ni and P content and temperature is made, particularly for kamacite diffusivity below the paramagnetic to ferromagnetic transition. The revised simulation model is applied to several iron meteorites and several mesosiderites. For the mesosiderites we obtain a cooling rate of 0.2 °C/Ma, about 10x higher than the most recent measured cooling rates. The cooling rate curves from the current model do not accurately predict the central nickel content of taenite halfwidths smaller than ∼10 μm. This result calls into question the use of conventional kamacite growth models to explain the microstructure of the mesosiderites. Kamacite regions in mesosiderites may have formed by the same process as decomposed duplex plessite in iron meteorites.