z-logo
Premium
New type of radiation of bright Leonid meteors above 130 km
Author(s) -
SPURNÝ Pavel,
BETLEM Hans,
JOBSE Klaas,
KOTEN Pavel,
LEVEN Jaap van't
Publication year - 2000
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2000.tb01497.x
Subject(s) - meteoroid , meteor (satellite) , brightness , comet , geology , physics , atmosphere (unit) , astronomy , magnitude (astronomy) , astrophysics , meteorology
— In this paper, we study the extremely high beginning parts of atmospheric trajectories of seven Leonid meteors recorded by sensitive TV systems equipped with image intensifiers up to apparent magnitude +6.5. For all seven cases, we observed comet‐like diffuse structures with sizes on the order of kilometers that developed quickly during the meteoroids' descent through the atmosphere. For the brightest event with a maximum absolute magnitude of −12.5, we observed an arc similar to a solar protuberance and producing a jet detectable several kilometers sideways from the brightest parts of the meteor head, and moving with a velocity over 100 km/s. These jets are common features for the seven studied meteors. Precise position in trajectory, velocity, and brightness at each point is available for all seven meteors, because of double‐station records on 85 km base‐line. When these meteoroids reached 130 km height, their diffuse structures of the radiation quickly transformed to the usual meteor appearance resembling moving droplets, and meteor trains started to develop. These meteor phenomena above 130 km were not recognized before our observations, and they cannot be explained by standard ablation theory.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here