z-logo
Premium
Mineralogical evidence for the origin of diamond in ureilites
Author(s) -
NAKAMUTA Y.,
AOKI Y.
Publication year - 2000
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.2000.tb01430.x
Subject(s) - graphite , diamond , meteorite , mineralogy , parent body , materials science , pyroxene , olivine , geology , chondrite , composite material , astrobiology , physics
— The x‐ray powder diffraction patterns of 50–100 μm C‐rich grains from five ureilitic meteorites—Kenna, Allan Hills (ALH) 78019, Yamato (Y)‐82100, Y‐791538, and ALH 77257—were obtained by using a Gandolfi camera. The results reveal that the basal spacing of part of the graphite coexisting with diamond is slightly smaller compared to the normal spacing. Compressed graphite is experimentally known to occur at the initial stage of the direct transformation from graphite to diamond structures at high pressures and temperatures. The presence of the compressed graphite in ureilites, therefore, gives clear evidence that the diamond formed by high‐pressure conversion of graphite. The modes of occurrence of C minerals observed with reflected light through an optical microscope reveal that graphite coexisted with olivine and pyroxene during igneous or metamorphic processes and, furthermore, that part of the graphite was converted to diamond by impact. The relative x‐ray intensity of diamond to graphite increases in the following order: ALH 78019 and Y‐82100 < Y‐791538 < Kenna < ALH 77257. This correlates with the shock level that is estimated mainly on the basis of the shock features of silicates. Therefore, the relative amounts of diamond to graphite suggested by x‐ray intensities may be useful as a measure of the degree of shock.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here