z-logo
Premium
Incipient melt formation and devitrification at the Wanapitei impact structure, Ontario, Canada
Author(s) -
DRESSLER B. O.,
CRABTREE D.,
SCHURAYTZ B. C.
Publication year - 1997
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.1997.tb01263.x
Subject(s) - devitrification , geology , clastic rock , shock metamorphism , geochemistry , mineralogy , sedimentary rock , crystallization , meteorite , chemistry , physics , organic chemistry , astronomy
— The Wanapitei impact structure is ∼8 km in diameter and lies within Wanapitei Lake, ∼34 km northeast of the city of Sudbury. Rocks related to the 37 Ma impact event are found only in Pleistocene glacial deposits south of the lake. Most of the target rocks are metasedimentary rocks of the Proterozoic Huronian Supergroup. An almost completely vitrified, inclusion‐bearing sample investigated here represents either an impact melt or a strongly shock metamorphosed, pebbly wacke. In the second, preferred interpretation, a number of partially melted and devitrified clasts are enclosed in an equally highly shock metamorphosed arkosic wacke matrix ( i.e. , the sample is a shocked pebbly wacke), which records the onset of shock melting. This interpretation is based on the glass composition, mineral relicts in the glass, relict rock textures, and the similar degree of shock metamorphism and incipient melting of all sample components. Boulder matrix and clasts are largely vitrified and preserve various degrees of fluidization, vesiculation, and devitrification. Peak shock pressure of ∼50–60 GPa and stress experienced by the sample were somewhat below those required for complete melting and development of a homogeneous melt. The rapid cooling and devitrification history of the analyzed sample is comparable to that reported recently from glasses in the suevite of the Ries impact structure in Germany and may indicate that the analyzed sample experienced an annealing temperature after deposition of somewhere between 650 °C and 800 °C.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here