Premium
Processing of chondritic and planetary material in spiral density waves in the nebula
Author(s) -
WOOD J. A.
Publication year - 1996
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/j.1945-5100.1996.tb02037.x
Subject(s) - nebula , physics , formation and evolution of the solar system , astrophysics , spiral (railway) , interstellar medium , planetary nebula , shock wave , spiral galaxy , astronomy , meteorite , astrobiology , stars , mechanics , mathematical analysis , mathematics , galaxy
— A widely held view of nebular evolution is that during the ∼0.5 Ma while interstellar material was collapsing onto the disk, the latter grew in mass to the point of gravitational instability. It responded to this by losing axial symmetry, growing spiral arms that had the capacity to tidally redistribute disk mass (inward) and angular momentum (outward) and prevent further increase in the disk/protosun mass ratio. The spiral arms (density waves) rotated differently than the substance of the nebula, and in some parts of the disk, nebular material may have encountered the arms at supersonic velocities. The disk gas, and solid particles entrained in it, would have been heated to some degree when they passed through shock fronts at the leading edges of the spiral arms. The present paper proposes this was the energetic nebular setting or environment that has long been sought, in which the material now in the planets and chondritic meteorites was thermally processed.