Premium
Carbonaceous chondrite clasts in the howardites Bholghati and EET87513
Author(s) -
Buchanan P. C.,
Zolensky M. E.,
Reid A. M.
Publication year - 1993
Publication title -
meteoritics
Language(s) - English
Resource type - Journals
eISSN - 1945-5100
pISSN - 0026-1114
DOI - 10.1111/j.1945-5100.1993.tb00637.x
Subject(s) - chondrite , meteorite , chondrule , parent body , achondrite , clastic rock , geology , carbonaceous chondrite , geochemistry , breccia , ordinary chondrite , mineralogy , astrobiology , sedimentary rock , physics
— Twenty‐two carbonaceous chondrite clasts from the two howardites Bholghati and EET87513 were analyzed. Clast N from EET87513 is a fragment classified as CM2 material on the basis of texture, bulk composition, mineralogy, and bulk O isotopic composition. Carbonaceous chondrite clasts from Bholghati, for which less data are available because of their small size, can be divided into two petrologic types: C1 and C2. C1 clasts are composed of opaque matrix with rare coarse‐grained silicates as individual mineral fragments; textures resemble CI meteorites and some dark inclusions from CR meteorites. Opaque matrix is predominantly composed of flaky saponite; unlike typical CI and CR meteorites, serpentine is absent in the samples we analyzed. C2 clasts contain chondrules, aggregates, and individual fragments of coarse‐grained silicates in an opaque matrix principally composed of saponite and anhydrous ferromagnesian silicates with flaky textures similar to phyllosilicates. These anhydrous ferromagnesian silicates are interpreted as the product of heating of pre‐existing serpentine. The carbonaceous chondrite clasts we have studied from these two howardites are, with one notable exception (clast N from EET87513), mineralogically distinct from typical carbonaceous chondrites. However, these clasts have very close affinities to carbonaceous chondrites and have also experienced thermal metamorphism and aqueous alteration, but to different degrees.