z-logo
open-access-imgOpen Access
AN ADAPTIVE LEARNING FRAMEWORK FOR FORECASTING SEASONAL WATER ALLOCATIONS IN IRRIGATED CATCHMENTS
Author(s) -
KHAN SHAHBAZ,
DASSANAYAKE DHARMA,
GABRIEL HAMZA F.
Publication year - 2010
Publication title -
natural resource modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.28
H-Index - 32
eISSN - 1939-7445
pISSN - 0890-8575
DOI - 10.1111/j.1939-7445.2010.00066.x
Subject(s) - environmental science , hydrology (agriculture) , water resource management , computer science , meteorology , geography , geology , geotechnical engineering
This paper describes an adaptive learning framework for forecasting end‐season water allocations using climate forecasts, historic allocation data, and results of other detailed hydrological models. The adaptive learning framework is based on artificial neural network (ANN) method, which can be trained using past data to predict future water allocations. Using this technique, it was possible to develop forecast models for end‐irrigation‐season water allocations from allocation data available from 1891 to 2005 based on the allocation level at the start of the irrigation season. The model forecasting skill was further improved by the incorporation of a set of correlating clusters of sea surface temperature (SST) and the Southern oscillation index (SOI) data. A key feature of the model is to include a risk factor for the end‐season water allocations based on the start of the season water allocation. The interactive ANN model works in a risk‐management context by providing probability of availability of water for allocation for the prediction month using historic data and/or with the incorporation of SST/SOI information from the previous months. All four developed ANN models (historic data only, SST incorporated, SOI incorporated, SST‐SOI incorporated) demonstrated ANN capability of forecasting end‐of‐season water allocation provided sufficient data on historic allocation are available. SOI incorporated ANN model was the most promising forecasting tool that showed good performance during the field testing of the model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here