Open Access
COMPETITION AND COOPERATION IN A DYNAMICAL MODEL OF NATURAL RESOURCES
Author(s) -
BIANCARDI MARTA
Publication year - 2010
Publication title -
natural resource modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.28
H-Index - 32
eISSN - 1939-7445
pISSN - 0890-8575
DOI - 10.1111/j.1939-7445.2009.00057.x
Subject(s) - competition (biology) , natural (archaeology) , natural resource , ecology , geography , biology , archaeology
Abstract In this paper, we propose a model describing the commercial exploitation of a common renewable resource by a population of strategically interacting agents. Players can cooperate or compete; cooperators maximize the payoff of their group while defectors maximize their own profit. The partition of the players into two groups, defectors and cooperators, results from the players' choices, so it is not predetermined. This partition is decided as a Nash equilibrium of a static game. It is shown that different types of players can exist in an equilibrium; more precisely, depending on the parameter values such as resource stock, cost, and so on, there might be equilibria only with defectors, cooperators, or with a combination of cooperators and defectors. In any case the total harvest depends on the renewable resource stock, so it influences agents' positions. It is assumed that at each time period the agents harvest according to Nash equilibrium, which can be combined with a dynamic model describing the evolution of fish population. A complete analysis of the equilibria is presented and their stability is analysed. The effect of the different Nash equilibria on the stability of the fish stock, showing that full cooperation is the most stable case, is examined.