
FISHERY BENEFITS OF FULLY PROTECTED MARINE RESERVES: WHY HABITAT AND BEHAVIOR ARE IMPORTANT
Author(s) -
ROBERTS CALLUM M.,
SARGANT HELEN
Publication year - 2002
Publication title -
natural resource modeling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.28
H-Index - 32
eISSN - 1939-7445
pISSN - 0890-8575
DOI - 10.1111/j.1939-7445.2002.tb00099.x
Subject(s) - marine reserve , fishing , fishery , habitat , tuna , marine protected area , nature reserve , range (aeronautics) , ecology , geography , fish <actinopterygii> , biology , materials science , composite material
. Fully protected marine reserves, areas that are closed to all fishing, have attracted great interest for their potential to benefit fisheries. A wide range of models suggest reserves will be most effective for species that are relatively sedentary as adults but produce offspring that disperse widely. Adult spawning stocks will be secure from capture in reserves, while their offspring disperse freely into fishing grounds. Such species include animals like reef fish, mollusks and echino‐derms, and models typically indicate that when they are over‐fished, catches will be higher with reserves than without. By contrast, the same models suggest that reserves will be ineffective for animals that are mobile as adults species like cod, tuna or sharks. They remain vulnerable to fishing whenever they move outside reserves. Unfortunately, most models lack sufficient realism to effectively gauge reserve effects on migratory species. They usually assume that individuals are homogeneously distributed in a uniform sea and move randomly. They also assume that fishers hunt at random. Neither is true. For centuries, fishers have targeted places and times when their quarry are most vulnerable to capture. Protecting these sites could have disproportionately large effects on stocks. Furthermore, models rarely take into account possible benefits from improvements in habitat within reserves. Such changes, like increased biomass and complexity of bottom‐living organisms, could alter fish movement patterns and reduce natural mortality rates in ways that enhance reserve benefits. We present a simple model of reserve effects on a migratory fish species. The model incorporates spatial variation in vulnerability to capture and shows that strategically placed reserves can offer benefits in the form of increased spawning stock and catch, especially when fishing intensities are high. We need to develop a new generation of models that incorporate habitat and behaviour to better explore the utility of reserves for mobile species. Migratory behavior does not preclude reserves from benefiting a species, but it demands that we apply different principles in designing them. We must identify critical sites to species and develop reserve networks that focus protection on those places.