z-logo
Premium
A Bayesian Inventory Model Using Real‐Time Condition Monitoring Information
Author(s) -
Li Rong,
Ryan Jennifer K.
Publication year - 2011
Publication title -
production and operations management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.279
H-Index - 110
eISSN - 1937-5956
pISSN - 1059-1478
DOI - 10.1111/j.1937-5956.2010.01200.x
Subject(s) - spare part , computer science , operations research , inventory theory , lead time , stock (firearms) , inventory management , bayesian probability , heuristic , inventory control , mathematical optimization , reliability engineering , operations management , economics , mathematics , artificial intelligence , engineering , mechanical engineering
Lack of coordination between machinery fault diagnosis and inventory management for spare parts can lead to increased inventory costs and disruptions in production activity. We develop a framework for incorporating real‐time condition monitoring information into inventory decisions for spare parts. We consider a manufacturer who periodically replenishes inventory for a machine part that is subject to deterioration. The deterioration is captured via condition monitoring and modeled using a Wiener process. The resulting degradation model is used to derive the life distribution of a functioning part and to estimate the demand distribution for spare parts. This estimation is periodically updated, in a Bayesian manner, as additional information on part deterioration is obtained. We develop an inventory model that incorporates this updated demand distribution and demonstrate that a dynamic base‐stock policy, in which the optimal base‐stock level is a function of some subset of the observed condition monitoring information, is optimal. We propose a myopic critical fractile policy that captures the essence of the optimal policy, but is easier to compute. Computational experiments indicate that this heuristic performs quite well relative to the optimal policy. Adaptive inventory policies such as these can help manufacturers to increase machine availability and reduce inventory costs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here