Premium
Integrated Order Scheduling and Packing
Author(s) -
Chen ZhiLong,
Pundoor Guruprasad
Publication year - 2009
Publication title -
production and operations management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.279
H-Index - 110
eISSN - 1937-5956
pISSN - 1059-1478
DOI - 10.1111/j.1937-5956.2009.01029.x
Subject(s) - heuristics , computer science , time horizon , scheduling (production processes) , mathematical optimization , operations research , schedule , service level , total cost , packing problems , order (exchange) , supply chain , job shop scheduling , mathematics , algorithm , business , statistics , accounting , finance , operating system , marketing
We consider an integrated production–distribution scheduling model in a make‐to‐order supply chain consisting of one supplier and one customer. The supplier receives a set of orders from the customer at the beginning of a planning horizon. The supplier needs to process all the orders at a single production line, pack the completed orders to form delivery batches, and deliver the batches to the customer. Each order has a weight, and the total weight of the orders packed in a batch must not exceed the capacity of the delivery batch. Each delivery batch incurs a fixed distribution cost. The problem is to find jointly a schedule for order processing and a way of packing completed orders to form delivery batches such that the total distribution cost (or equivalently, the number of delivery batches) is minimized subject to the constraint that a given customer service level is guaranteed. We consider two customer service constraints—meeting the given deadlines of the orders; or requiring the average delivery lead time of the orders to be within a given threshold. Several problems of the model with each of those constraints are considered. We clarify the complexity of each problem and develop fast heuristics for the NP‐hard problems and analyze their worst‐case performance bounds. Our computational results indicate that all the heuristics are capable of generating near optimal solutions quickly for the respective problems.