z-logo
Premium
Development Of Cvt Control System And Its Use For Fuel‐Efficient Operation Of Engine
Author(s) -
Adachi Kazutaka,
Ochi Yoshimasa,
Kanai Kimio
Publication year - 2006
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1111/j.1934-6093.2006.tb00273.x
Subject(s) - feed forward , control theory (sociology) , controller (irrigation) , control system , engineering , acceleration , nonlinear system , control engineering , computer science , control (management) , artificial intelligence , agronomy , physics , electrical engineering , classical mechanics , quantum mechanics , biology
Continuously variable transmission (CVT) provides an automobile with the ability to change the gear ratio continuously, which can then improve not only ride quality such as acceleration performance but also fuel‐efficiency. However, to take advantage of the ability, a control system that can precisely control the gear ratio is required. This paper proposes such a control system for a belt‐driven CVT system. For controller design, first the CVT system is modeled by analytical and experimental approaches. The resultant static and dynamic characteristics provide a nonlinear first‐order model with an uncertain time constant and time delay. The nonlinear steady‐state gain is adjusted to one by a gain‐scheduled pre‐compensator. Thereby the plant model becomes a linear first‐order lag system with a dead time. The next step is controller design using the plant model. To guarantee stability and control performance against the parameter variation and time delay, the μ‐synthesis, a robust control method, is employed for feedback control. In addition, a feedforward controller is incorporated into the feedback control system to obtain better output response. The feedforward controller is given by a combination of the inverse system of the plant and a reference model that gives desired output response. As a result, the control system becomes a two‐degree‐of‐freedom control system. To evaluate the performance of the control system and its effectiveness on the fuel‐efficiency, computer simulation and driving tests were conducted. The simulation and experiment results prove that the proposed control system can make the gear ratio track a reference output quickly and precisely in the presence of the uncertainties. The results also show that the control system improves fuel‐efficiency by changing the gear ratio so that the engine torque and its revolution speed can satisfy optimum‐efficiency operating condition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here